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Frequency dependence and competition

By F.B. CHRISTIANSEN

Department of Ecology and Genetics, University of Aarhus, DK-8000 Aarhus C, Denmark

Intraspecific competition implies interaction among the individuals of a population,
so natural selection on genotypic variation in characters related to the competition
will necessarily be frequency dependent. Intraspecific antagonistic competition
exhibits properties similar to other behavioural interactions between individuals. In
exploitative intraspecific competition the interactions among individuals are less
direct. Exploitation modifies the abundance of the various limiting resources
according to the use of these resources by the individual members of the population.
The amount of resource available to an individual is therefore a function of the
phenotypes present in the population, through their density and frequency.

INTRODUCTION

Natural selection orginates from differences in the performance of individuals in the
environment where they live. The description of natural selection therefore proceeds by
depicting the relation between the individual and its environment, the physical environment
as well as the biotic environment made up of other living organisms. The process of natural
selection is therefore perceived as an ecological process, and the classification of ecological
processes provides obvious categories of possible causes for natural selection. Other views of
selection in the synthetic theory of evolution are suggested by the indirect nature of biological
inheritance, but here it suffices to address the ecological classification, which refers to existing
phenotypic variation as material for natural selection.

Natural selection depends on the particular environment in which the population of interest
lives, so selective forces shaped by the biotic environment vary with the characteristics of this
environment. Individual fitness therefore becomes a function of the size and the phenotypic
composition of the populations with which the individual coexists. A most important
component of the biotic environment of an individual is the population of conspecific
individuals, so individual fitness depends on the size and composition of its own species
population. In population genetical models the influence of the biotic environment is
incorporated by letting the individual fitness depend on the density of the species and on the
frequency of the various phenotypes under consideration. Density-dependent selection and
frequency-dependent selection therefore express the extension of classical models of population
genetics to the situation where the effects of intraspecific interactions or interactions between
species are also taken into account. The distinction between the two types of environmental
influence on individual fitness is often purely technical, as selection dependent on the
composition of a population usually varies with the density of the population.

Interspecific and intraspecific interactions are qualitatively different as causes of natural
selection. Three fundamentally different types of interaction are considered in ecology, namely
competition, mutualism and predator—prey (or host—parasite) interactions. Seen as interspecific
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588 F.B. CHRISTIANSEN

interactions, their influence on natural selection and evolution in a given species may be
judged, on the basis of the classical models of constant fitnesses, to provide reasonable short-
term estimates under simplified circumstances. This simplification is, of course, a reflection of
the fact that natural selection and evolution occur within a population. Changes in a given
species only amount to changes in the environment of other species. Even though this may alter
the evolution of the other species, and therefore change the environment of the original species,
it all happens in the future. Long-term results have in any case to take account of the
concurrent evolution in the interacting species. For any particular species these models, strictly
speaking, describe its evolution and the development of its biotic environment. Therefore, it is
not surprising that conclusions from the comprehensive models are adequately predicted by
classical models of population genetics.

The description of intraspecific interactions, on the other hand, is simply an integral part of
the description of natural selection. In general, variation in the phenotypes related to
intraspecific interactions gives rise to natural selection with individual fitnesses that are
inherently frequency- and density dependent. Of the three fundamental types of ecological
interactions the most relevant here are intraspecific competition and intraspecific mutualism.
I will be concerned mainly with the effects of competition, but competition and mutualism
share some evolutionary properties. The interaction of an individual with other individuals has
an effect both on the individual concerned and on other individuals, but the survival and well
being of the individual concerned need not depend on the effect it has on the other individuals.
The benefit or the harm done to the individuals may have no influence on the fitness of the
individual concerned. Indeed such actions may often be detrimental to the individual, as
exemplified by Haldane’s (1932) problem of the evolution of socially valuable, but individually
disadvantageous, characters. In sedentary organisms the effect of interference competition
between individuals is simpler, in that the detrimental effect of the interaction on one
individual may be equivalent to the advantageous effect on the other individual, as for instance
in competition for space among barnacles.

Intraspecific competition may also be less direct, where the individual fitness is influenced
by the presence of other individuals through their modification of the environment. In motile
organisms this may occur as exploitative competition, where the individuals use a limited
resource like, for instance, food. The availability of food is then influenced by the consumption
of the individuals in the population. Thus, the population modifies the environment, reflecting
the average individual consumption, and the consumption of the average individual is
determined by the composition of the population. The environmental modification, and
therefore the individual performance, is a function of the frequency and density of the various
phenotypes in the population.

INTRASPECIFIC COMPETITION

The simplest model of intraspecific competition is the logistic model of Verhulst (1838) and
Pearl & Reed (1920). This model originated as a modification of the Malthusian growth
model, so that the expected number of offspring per individual decreases linearly with
increasing population density in order to reflect competition for limiting resources. As in the
Malthusian model, all individuals in the logistic model are considered identical. All individuals
are affected equally by an increase in population density, and the measure of population
density is equally affected by each individual. Models introducing heritable variation in the
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competitive effects of various phenotypes were introduced and analysed by Kostitzin (1936,
1938; see Scudo & Ziegler 1976, 1978), who considered models of natural selection based on
the Lotka—Volterra models for interspecific competition. These were models of frequency-
dependent selection and he argued, for instance, that in a haploid species polymorphism may
be maintained in characters related to the exploitation of resources. Kostitzin’s models were
‘continuous-time’ models in the tradition of Fisher (1930) and Norton (1928). After this
founding work in theoretical evolutionary ecology little happened until the study by
MacArthur (1962), who had little to say about frequency-dependent effects. Levin (1971) and
Smouse (1976) studied the frequency-dependent effects in more detail, using models of inter-
and intraspecific competition closely related to those of Kostitzin.

Contemporary developments in theoretical evolutionary ecology are based on discrete-time
models, which simplify the handling of the population genetic aspects of the evolutionary
process (Anderson 1971; Roughgarden 1971; Clarke 1972). These are models of density-
dependent selection, but the model of Clarke also incorporates variation in characters related
to intraspecific competition. The model of Anderson and Roughgarden is a discrete-time
analogue of the logistic model, but Clarke’s model, also called the hyperbolic model, is more
directly related to the logistic (Leslie 1957). The extension of Clarke’s model to a discrete-time
logistic was introduced by Poulsen (1979). Poulsen’s model extends the discrete models by
recognizing that the genetical simplification only needs discrete breeding and non-overlapping
generations. It describes competition and survival in continuous time.

The Poulsen model for population regulation considers a homogeneous population with non-
overlapping generations, and it monitors population size immediately before reproduction. Let
x denote the population size at this stage in a given generation. Assume that these x individuals
each produce B offspring, so the initial population size in the offspring generation is «(0) = Bx.
The number of offspring at age ¢ is u(¢), and the individuals are assumed to mature after a fixed
time of development, say 7. Immediately before reproduction the population size of the
offspring generation is x" = u( 7). During development the population experiences mortality
due to density-independent and density-dependent causes, so the population size changes

according to
du

i — (d+cu) u, (1)

where the constants d and ¢ are the density-independent death rate and the coefficient of the
density-dependent death rate respectively. In this model the probability of survival in a low-
density population is approximately D = e ", so the population multiplies by the factor DB
per generation when the population size is small. The recurrence equation for the population

size can be written:
, DBx

¥ = {35(1=D) Bx @)

where y = ¢/d. The population size therefore grows according to the logistic model, in that the
population sizes follow an integral curve of the continuous-time logistic model at discrete time
intervals. If the density-independent growth factor DB is larger than unity, that is, if the
population grows at low densities, then the population size converges to a globally stable
equilibrium given by

DB—1
y(1-D)B' )
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The evolutionary model considered by Clarke (1972) may be viewed as basing its fitness
definition on (2), but given the present specification in terms of primary fitness parameters, the
rates of birth and death, the formulation of a model of natural selection can be made more
directly (Poulsen 1979). Consider an autosomal locus with two alleles, 4 and g, in a panmictic
population. Assign to the genotypes A4, Aa and aa the indices 1, 2 and 3, respectively, and let
x,,i = 1,2, 3, denote the number of the three genotypes in the population in a given generation.
The sum x = x, + x, + x, is the total population size. The parameters of the model may then be
assigned for each genotype, so, for instance, genotype ¢ will have the density independent death
rate d,, i = 1, 2, 3. For simplicity we will assume that all genotypes have the same fecundity B,
as fecundity selection and sexual selection may give rise to special kinds of frequency-dependent
selection (see, for example, Feldman et al. 1983; O’Donald 1980). The frequency of allele 4
in this population is p = (2x,+x,)/(2x), and that of allele a is ¢ = (2x3+x,)/(2x), so with
random mating and equal fecundity the number of offspring of the various genotypes

becomes

u,(0) p°Bx

[u2 (O)] = [2qux} . (4)
u3(0) ¢*Bx

These offspring suffer a genotype-dependent mortality during development, so the change in
u, 1=1, 2, 3, is given by the equation

du,

T
where the density-dependent death rate coefficient ¢;;, j =1, 2, 3, describes the mortality
inflicted on genotype i by the presence of an individual of genotype j. After development the
three genotypes exist in the numbers x; = u,(T), : =1, 2, 3.

Equation (5) has the same correspondence to equation (1) as the Lotka—Volterra equations
for interspecific competition have to the logistic equation, so (5) is the discrete-time parallel to
Kostitzin’s equations. The density-dependent death rate coefficients of (5) describe the effects
of intraspecific competition, and the result may be selection on the genotypic variation that
depends both on the density and on the composition of the population.

Not every matrix (¢;);;-1.23 however, produces density- and composition-dependent
selection. If all density-dependent death rate coefficients are equal, then selection becomes
density independent, but the same happens if only ¢ is independent of 7, that is, ¢; = g; for all
i, j=1,2, 3. In this case (5) integrates to the (implicit) equation

—(di+ e uy+epupt ez ug) u, (5)

% = u(T) = 4,(0) D; G[1,(0), u3(0), 45(0)], (6)

(3

T

where Glu,(0), u3(0),u3(0)] = CXP[—J (gruy+g2up+ g us) dt] (7)

0

and D, = exp (—d; T), As the factor G in (6) does not depend on , it does not produce selection,
so the gene frequency in the offspring generation becomes

,__ p(pD,+gD,)
? —P2D1+2[’4D2+‘]2D3’ ®

which is the ordinary recurrence equation for constant fitnesses.
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Therefore, intraspecific competition with variation in the impact of the presence of a given
individual on other individuals does not produce either density dependence or frequency
dependence in the selection coefficients unless concurrent variation in the susceptibility of the
individuals occurs. The result is frequency-dependent population regulation, so changes in
population size during evolution need not bear any immediate relation to the increase in
mean survival of the population (Poulsen 1979). In particular, a genotype that differs from
other genotypes by being either more altruistic or more~antagonistic will not be distinguished
by selection unless it at the same time differs in its susceptibility to the behaviour of the other
individuals or in aspects of its density-independent fitness. This conclusion pertains to the
panmictic situation considered here, but both behavioural characteristics may be affected by
kin selection under appropriate circumstances.

If the density-dependent coefficients of death rate within each of the equations given by (5)
are equal, that is, if ¢;; is independent of j so ¢;; = f; for all 4, j = 1, 2, 3, then selection becomes
density dependent. In this case (5) integrates to the (implicit) equation

x; = u(T) = u,(0) DiF(u)fz’

where u(t) = u, (t) +u,(t) +uy(¢) and

T
Flu) = exp[—f u(t) dt]. (10)
0
This factor F only depends on the density of the population during development, so in this sense
selection is purely density dependent. However, the variation during development in the total
density, «, is determined by the variation in the density of each genotype, u;, 1 = 1, 2, 3, so the
variation in # depends on the initial composition of the population, that is, F is frequency-
dependent. The frequency dependence, however, is weak, and the model has a property that
parallels the purely density-dependent fitness models (Roughgarden 1976), namely that the
average population size, F(u), increases after an initial period during evolution (Iwasa &
Teramoto 1980), a property that is not characteristic of other frequency-dependent selection
models (Cockerham et al. 1972).

SYMMETRICAL COMPETITION

The Poulsen model is very detailed, and its analysis in more complicated situations is
difficult. For the further analysis of intraspecific competition it has proved convenient to use
the Anderson-Roughgarden model which, in its ‘difference equation’ formulation, refers more
directly and simply to the differential equations of continuous time Lotka—Volterra models. As
a model for population regulation it is given by the recurrence equation

¥ =x[1+V(K—x)]. (11)

Unlike the Poulsen model this uses the heuristic parametrization of Gause (1934), in terms of
the equilibrium population size, K, also called the carrying capacity, and a proportionality
parameter V that provides the growth factor at low population densities as approximately
1+ VK. The model has the unfortunate property that the factor 1+ V(K —x) becomes negative
for x sufficiently large, and this happens inevitably if V is sufficiently large. In addition the
model involves a time-lag in the density response, so for moderately large values of V cyclic or
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chaotic behaviour is expected. Therefore, the model should be viewed as an approximation to
the continuous-time logistic model, and V should be assumed to be small (Christiansen &
Fenchel 1977).

Equation (11) immediately suggests the form of the individual fitness values in an
evolutionary model, in that the growth factor W = 14 V(K —x) plays the role of fitness in
classical population genetics. This procedure was first suggested by Wright (1960) and later
used extensively, commencing with the work of Anderson (1971), Roughgarden (1971) and
Clarke (1972). This way of specifying density-dependent genotypic fitnesses leads to the
general result that selection on the variation at one locus in a panmictic population maximizes
the equilibrium population size in the population (Roughgarden 1976). This result is
reminiscent of MacArthur’s (1962) result in continuously breeding populations, and it
parallels the fitness maximization principle for constant genotypic fitnesses (Fisher 1930;
Kingman 1961).

The extension of the Anderson—-Roughgarden model to interspecific competition was made
by Roughgarden (1972, 1974, 1976) and to intraspecific competition by Matessi & Jayakar
(1976). Leon (1974) extended Clarke’s model to interspecific competition. With the same
genetic model as in the previous section intraspecific competition provides the genotypic

fitnesses
W,=1+ V[Ki_x(f’27’n+2[’97’i2+72')’i3)]> (12)

which are clearly density- and frequency dependent (Matessi & Jayakar 1976; Christiansen &
Fenchel 1977). The parameters y,;, i, j = 1, 2, 3, are the intraspecific competition coefficients,
and they describe the decrease in the fitness value of genotype ¢ due to the presence of an
individual of genotype j. The K parameters have a significance that parallels the K parameter
in Equation (11), but here the equilibrium population size in a monomorphic 44 population
is Ky/v11-

The fitness maximization principle for constant selection and the similar maximization
principle for purely density-dependent selection both break down when frequency dependence
is allowed. However, Matessi & Jayakar (1976, 1980, 1981) analysed the situation of
symmetrical competition, where y,; = y,; for i, j = 1, 2, 3, and found that the maximization
principle for density-dependent selection may be extended. The quantity that is maximized by
selection may be written as K3/vy,,, where

K, = p°K, +2pgK,+ ¢°K, (13)
is the average carrying capacity in the population and

Yoo = P*V10+ 20920+ 4*V50 (14)

is the average competition felt by an individual in the population, which here is given in terms
of the average competition felt by an individual of genotype i:

Yio = [’27i1 +2pqy:.+ qz')’ia' (15)

If selection is purely density dependent, so y;, = 1 for ¢, j = 1, 2, 3, then selection maximizes
the average carrying capacity K, of the population (Anderson 1971; Charlesworth 1971;
Roughgarden 1976).
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In terms of intraspecific competition the result is equally straightforward, which may be seen
by considering the case K; = K, = K;. The maximization principle then says that selection
minimizes Y,,, the average competition felt by an individual in the population (Matessi &
Jayakar 1976). Thus, the maximization of Ki/7y,, can be interpreted as a balance between the
maximization of the carrying capacity and the minimization of intraspecific competition.

EXPLOITATIVE COMPETITION

The general principles derived for selection by intraspecific competition can be applied to
more particular situations, where the competitive interactions are understood and can be
related to observable phenotypic variation in the population. The exploitative competition
model of MacArthur & Levins (1967) and Levins (1968) which relates the consumption of
food to the size of trophic organs is a good basis for a more detailed analysis of intraspecific
competition.

‘The MacArthur-Levins model has been used as a basis for the description of competition for
food among Anolis lizards (Schoener & Gorman 1968; Roughgarden 1983) and among
Hydrobia mudsnails (Fenchel 1975; Fenchel & Kofoed 1976). Hydrobia feeds on microscopic
algae (mainly diatoms) at the surface of marine sediments and a snail ingests food and other
particles with a distribution that depends on its size. The mean particle size ingested is
proportional to the size of the snail. On a logarithmic scale the distribution of particle sizes for
an individual snail is approximately normally distributed with a variance independent of the
size of the snail (Fenchel 1975). The grazing snails inflict a mortality on the algae, and this
predation may be described as a depression in the standing crop of each algal species, since their
generation time is short compared to the snail predator (Fenchel & Kofoed 1976 ; Christiansen
& Fenchel 1977). The community of algal species, as a simplification of the model, is finally
described as a continuum of sizes of food particles.

The MacArthur-Levins model of resource exploitation is specified in terms of the resource
spectrum S(p) that describes the abundance of resources of quality p (size of the algal cell) in
the absence of predators (the snails), and the utilization function of an individual predator
U(p) that specifies the rate with which the individual consumes resources of quality p. With x
individuals all having the same utilization function the resource is grazed down to the level
R(p) = S(p) —xU(p), and each individual is ingesting resources at the rate fU (p) R(p) dp. This
formulation of resource dynamics produces a model for the population dynamics by making
individual fitness dependent on the amount of ingested resources (see Christiansen & Fenchel
1977).

'The model becomes particularly simple when the resource abundance spectrum and the
utilization functions are proportional to Gaussian distributions. For simplicity let the resource
spectrum, §, have the mean zero and the variance o2. The utilization functions are determined
by the individual mean resource quality utilized and by the variance in resource utilization by
the individual. In Hyd.robia this variance was homogeneous among individuals, and in the
following argument such homogeneity will be assumed for the model population. The
individual means vary in the Hydrobia snails, and the variance in utilization between
individuals is typically about a sixteenth of the variance within individuals (Fenchel 1975), so
the total variance in utilization by the snail population is dominated by the variation in
resource use of the individual snail.
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Suppose our two-allele autosomal locus influences a character related to the utilization of the
resources, and suppose the three genotypes, A4, Aa and aa, on the average utilize resources with
mean value of D,, D, and D,. This average use can be described by a genotypic utilization
function, U,, i = 1, 2, 3, with mean D, and variance W?, say. This variance in genotypic use
is larger than the individual utilization variance because it includes the variation among
individuals within the particular genotype. This added variance is the environmental variance
and the genotypic variance at other loci influencing the resource utilization. Making the
simplifying assumption that the genotypic utilization functions are Gaussian, the present model
provides fitnesses of the form (12) where

I "
and Yy = exP[—%—;Ve—")z] (17)

fori,j = 1,2, 3 (Christiansen & Fenchel 1977; Christiansen & Loeschcke 19804). The carrying
capacity parameter (16) depends on the distance of the mean utilization of the genotype from
the mode in the resource abundance spectrum. The intraspecific competition coefficient (17)
between two genotypes depends on the distance between the mean utilizations of the
genotypes, so the competition is symmetric. The two distances are, however, evaluated with
respect to different scales. The carrying capacity parameter is scaled with respect to the sum
of the resource variance and the utilization variance, whereas the competition coefficient
only depends on the utilization variance. This difference in scaling is given by the parameter
k* = o2/W? that expresses the width of the resource spectrum in relation to the width
of the genotypic utilization.

Consider a simplified genetic model of a locus where the genes contribute additively to the
genotypic effects, that is, D, =2d,,D,=d,+d, and Dy = 2d,, where d, and d, are the effects
of the alleles. The intraspecific competition then maintains polymorphism when

(&*—1) (dy—d,) [dy—do(*+T)/(K*—1)] > O (18)
and (2= 1) (dy—d,) [d,—d,(K*+T)/(k*—1)] > 0, (19)

otherwise the population becomes monomorphic 44 if (18) is fulfilled and monomorphic aa if
(19) is fulfilled (Christiansen & Loeschcke 19804). In addition, the polymorphic equilibrium
is globally stable whenever it exists. Thus, if the utilization of the genotypes are fairly close, that
is d, and d, are close in value, then either condition (18) or condition (19) is violated, and the
population will become monomorphic for the genotype closest to the resource optimum. This
occurs, for instance, when all genotypic utilization functions are far from, and to the same side
of, the resource optimum, and the utilization spectrum of the population converges towards the
resource optimum. On the other hand, if the utilization spectra of the homozygotes are situated
nearly symmetrically around the resource optimum (that is, 4, and d, are numerically close in
value, but of opposite signs) then conditions (18) and (19) are fulfilled, and the population will
remain polymorphic. The magnitude of « is important for the qualitative properties of the
condition for polymorphism. A wide resource spectrum, « > 1, implies that polymorphism
prevails whenever d, and d, are of opposite signs, and polymorphism is possible also when d,
and d, are of the same sign. A narrow resource spectrum, k < 1, implies that polymorphism
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never persists when d, and d, are of the same sign, and polymorphism only is possible when
d, and d, are of opposite signs.

The equilibrium gene frequency is the solution to the equation
pK, +¢K, _ pK,+ K,
PY10t V20 Y20t 9V30

The model is most reasonable when viewed as an atom of a quantitative inheritance model, so
itis reasonable to assume that the difference between the allele effects d, and d, is small. In this
case the polymorphic equilibrium only exists if both allele effects are small, and then the
equilibrium is unique and can be found as

_(K*=1)d,— (K*+T)d,
P e 1 3) (d,—d)

(20)

(21)

This equilibrium is stable (K,/7y,, is maximized).
The genotypic fitnesses at the gene frequency equilibrium is found from equation (12) by
using the equilibrium equation (20):

Wi =1—(q/p) s,
W= 145, (22)
and Wy=1—(p/q) s,

where s, equals V(K; Y40 — Ky ¥20) /700 €valuated at equilibrium. If, for instance, the utilization
functions of the genotypes are symmetric around the resource optimum, that is d 4= —d,, then
the equilibrium gene frequencies are both § and s, is negative when « > 1 and positive when
k < 1. Thus, for a wide resource spectrum, « > 1, the hetrozygote will appear as having a lower
fitness than the homozygotes, whereas for a narrow resource spectrum, « < 1, the opposite will
be the case, that is, over-dominance in fitness will prevail. As another example let d, = 0,
so the genotype aa is at the resource optimum, then a polymorphic equilibrium exists for
a wide resource spectrum, k> 1, and the equilibrium gene frequency of allele 4 is
p = (k*—1)/[2(k*+3)]. Now s, is negative when k > 3.45 and positive when 1 < k < 3.45.
Again for a sufficiently wide resource spectrum the heterozygote will appear as having a lower
fitness than the homozygotes, whereas overdominance in fitness will prevail only for a narrower
resource spectrum.

The variation of the genotypic fitnesses (12) can be studied in the case of small allele effects
by assuming that the population size is at the equilibrium corresponding to the prevailing gene
frequency, i.e. we assume that W, = 1 or the equilibrium population size, x( p) say, is given by
x(p) = Ko/Voo- Again considering the symmetric case where d, = —d, we have that for p=0
the fitnesses are W, = 1+ VK(1—y*), W, =14+ V(1—Ky) and W, = 1, respectively, where
W, > W, > W;. Thus, the least-frequent type has the highest fitness, and the dominating type
in the population has the lowest fitness. The genuine variation in fitness values is, however, very
hard to observe in natural or experimental populations, because the variation is reminiscent of
the spurious variation in estimated fitness values that one would expect when the breeding
components of selection are incompletely described by the data (Prout 1965; Christiansen
et al. 1977; Christiansen 1984a).

The two-allele model with additive effects extends readily to a multiple-allele model, but the
present analysis suffices as a description of a polymorphic population, in that at most two alleles
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may segregate at any polymorphic equilibrium unless the allele effects are very large
(Christiansen & Loeschcke 1980a). The introduction of a new allele into a population at a
polymorphic equilibrium will have different consequences depending on whether the resource
spectrum is wide, k > 1, or narrow, « < 1. With a wide resource spectrum a new allele 4" will
increase in the population when rare, when its effect, d. say, lies outside the interval bounded
by d, and d,, that is, for d, < d, say, A" will increase if d,, < d, or d, < d . After the initial
increase of a new allele the population will settle on a new polymorphic equilibrium
segregating two alleles (4 and 4’, when d,, < d,, and a and 4", when d, < d,,). With a narrow
resource spectrum (k < 1) a new rare allele 4" will increase in frequency, when its effect lies
inside the interval bounded by d, and d, that is, A" will increase if d, < d, <d, (again
assuming d, < d,), and the increase of 4’ will either result in a two-allele polymorphism
segregating A" or in monomorphism for the genotype 4’A’. Thus, selection due to intraspecific
exploitative competition will be phenotypically diversifying in an environment with a wide
resource spectrum. However, this increase in the variance among individuals may initially
happen at the same time as genetic polymorphism arises, but if genetic polymorphism at a locus
already exists, then the phenotypic diversification is not followed by a genetic diversification
at that locus. The tendency towards phenotypic stabilization in an environment with a narrow
resource spectrum will eventually lead to monomorphism given sufficient genetic variation. A
discussion of these effects within the framework of a quantitative genetic model is given by
Slatkin (1979).

The principle of a maximum of two alleles at a polymorphic equilibrium has the immediate
corollary that closely linked polymorphic loci that influence a character involved in
intraspecific competition will show a high degree of linkage disequilibrium (Loeschcke &
Christiansen 1984). The model may be extended to cover multi-dimensional resources with
very similar results (Christiansen & Loeschcke 1987). With additive gene effects the maximum
number of alleles at a polymorphic equilibrium equals one plus the dimension of the resource
quality description, and selection will have a diversifying tendency if the resource spectrum is
wide in all dimensions and a stabilizing tendency if it is narrow in all dimensions. At
equilibrium the average fitness of a given allele will be less than the fitness of the corresponding
homozygote when the resource spectrum is wide in all dimensions and conversely it will be less
if the resource spectrum is narrow in all dimensions.

Another route of generalization is to relax the assumption of additive gene effects and allow
for dominance (Christiansen & Loeschcke 19804; Christiansen 19845). The introduction of
dominance does not fundamentally alter the basic conclusions, except for the global stability
of the polymorphic equilibrium. With dominance our genetic model becomes D, = 2d,,,
D,=d,+d,—h(d,—d,) and D, = 2d,, where d, and d, are the allele effects and % describes the
effect of dominance. If we restrict attention to the case of a wide resource spectrum, « > 1, and
assume that |d,| < d, (no loss of generality), then a globally stable polymorphism prevails in
the additive model, £ = 0, when d,/d, < (k*—1)/(x*+7), and otherwise monomorphism aa
ensues. For complete -dominance, # = —1 or 1, a globally stable polymorphism exists when
d,/d, < (k*—1)/(k*+3), and otherwise the monomorphic aa equilibrium is globally stable.
Thus complete dominance and no dominance give very similar results.

For intermediate dominance, —1 < & < 1, a globally stable polymorphism exists when

dy _ (1=h) (=1
4, ST —h—1) (23)
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For & = 0 and for # = —1 this condition coincides with the previously stated conditions, but for
h = 1 it is different. The monomorphic aa equilibrium is locally stable when condition (23) is
not fulfilled and % # 1, but for £ = 1 it is unstable also when 0 < d,/d, < (k*—1)/(k*+3). This
discontinuity in the conditions is caused by the simultaneous existence of the locally stable
monomorphic equilibrium and a locally stable polymorphic equilibrium for an interval of
d,/d, values for intermediate dominance and high values of the dominance parameter, that is,
for (k*+3)/(3k*+1) < h < 1. Thus a high degree of dominance by the allele that places the
homozygote closest to the optimum may cause the final outcome of selection to depend on the
initial state. For parameters with suitable values, a population initially 44 will end up
polymorphic if allele a is introduced as rare, whereas a population initially aa will remain
monomorphic if 4 is introduced as rare. Similar behaviour of models with absolute dominance
and without dominance therefore provides no guide to the behaviour of models with
intermediate dominance.

The results of this section all rely on the assumption that the utilization functions of the
genotypes are Gaussian. This, however, is not a crucial assumption as any ‘bell-shaped’
distribution would provide a very similar structure of the intraspecific competition coefficients
(May 1974). However, a qualitatively different shape, as for instance the very ‘ pointed’ shape
used by Roughgarden (1972), yields very different results, and the limitation to two alleles for
a one-dimensional resource spectrum is replaced by the possibility of a large number of alleles.
The mechanism of competition, as provided by the MacArthur—Levins model, is considerably
more important. Even though the model seems quite robust, it is limited by the description of
rather passive competition for a renewable food resource. Competition for space, a rather fixed
supply of food, or any resource that an individual can occupy is not well described by the
model, and evolutionarily interesting ecological models exist for these phenomena (Schoener
1976; Shigesada et al. 1979; Abrams 1986). Competition for space often occurs during a
sedentary phase that allows individual by individual interactions, so the evolution of
antagonistic interactions become feasible.

INTERSPECIFIC COMPETITION

Interspecific exploitative competition is felt by the individual in the population through the
depletion of resources, just like intraspecific competition. The influence on individual fitness
due to interspecific exploitative competition therefore adds to the influence of intraspecific
competition. Interspecific competition may be viewed as setting the stage where intraspecific
competition acts, in that it forms the shape of the resource spectrum. The evolutionary
consequences for a species that competes with other species in a MacArthur-Levins model with
Gaussian utilization functions and a Gaussian resource spectrum are very close to the results
for intraspecific competition with the optimum and the variance of the resource spectrum
determined by the other species (Roughgarden 1976; Fenchel & Christiansen 1977;
Christiansen & Loeschcke 19804; Loeschcke 19844, b). The shape of the spectrum of resources
available to a species under interspecific competition is not Gaussian, but the results for a
Gaussian resource hold with a good approximation (Loeschcke 1984a, 4). It is rather
unimportant for the evolution of a given species that the density of competitors depends on its
phenotypic composition, even though it is very important for the dynamics of the guild of
competitors (Loeschcke 1985).

These results are part of a general principle for symmetrical competition. Symmetrical
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interspecific competition show the same conformity to intraspecific competition as inter-
specific exploitative competition shows to intraspecific exploitative competition in the
MacArthur-Levins model. Matessi & Jayakar (1980, 1981) showed that evolution driven by
natural selection due to symmetrical interspecific and intraspecific competition maximizes the
quantity K2,/Yge00, Where K, is the carrying capacity parameter of genotype j in species i,
Y is the competition coefficient between genotype j in species ¢ and genotype / in species £,
and the index zero signifies the population average (see (13), (14) and (15)). Thus the joint
evolution of a guild of competitors tends to maximize the average carrying-capacity parameter
of each species and at the same time minimize the average competition in the population.

Asymmetrical interspecific competition may or may not have an influence on the evolution
of a community of competitors. In general, evolution driven exclusively by competition will
proceed so as to minimize the competition pressure felt by the average individual of a species
(Roughgarden 1979). As with intraspecific competition it is conceivable that variation in
phenotypes connected to interspecific competition is neutral with respect to natural selection
because the differences between phenotypes is only in their effect on other individuals. Thus
the evolution of interspecific antagonistic interactions between motile organisms poses
problems that parallel those of intraspecific interactions, in that the price for costly interactions
should in some way be conveyed to individuals related to the individual concerned. This could
be achieved by the interspecific interaction being based on altruism within family groups, but
it is also possible within groups of less-related individuals (Slatkin & Wilson 1979). In any case
these dual-level individual interactions give rise to a kind of frequency-dependence in
individual fitnesses that is best handled within the study of evolution of animal behaviour, and
this kind of frequency-dependence is very different from that produced by the rather passive
interaction between individuals and their environment.
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Discussion

J. AnToNovics (Botany Department, Duke University, U.S.A.). Could more than two alleles be
maintained in the population if the reserve spectrum was bimodal, trimodal, etc. rather than
Gaussian as in Dr Christiansen’s model?

F. B. CurisTIANSEN. The limit of two alleles pertains to the situation of small additive effects of
the alleles on the phenotype. The result is reminiscent of the limiting similarity results for
similar models of interspecific exploitative competition, and it holds for values of the allele
effects up to about the standard deviation of the utilization function (Christiansen & Loeschcke
19804a).

With small allele effects the assumption on the functional form of the resource spectrum
is immaterial. The resource spectrum determines the carrying-capacity parameter through
a convolution with the utilization function, that is the carrying-capacity parameter is
proportional to the average resource abundance picked by the genotype. Thus a small
difference in utilization mode will correspond to a small difference in carrying-capacity
parameter for all reasonable resource spectra, and this is exactly the property used in the
arguments of Christiansen & Loeschcke (19804). The limit of two alleles is therefore
independent of the particular form of the resource spectrum.

The condition for increase of a rare allele 4’ introduced into a population at a stable
equilibrium segregating alleles 4 and a also holds for a general resource spectrum. The only
change is that the characterization of whether a particular resource is narrow or wide is not
simply a function of the variance in the resource spectrum.
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